经济> 正文

勾股定理典型题带答案 勾股定理经典练习题

时间: 2023-06-15 04:19:31 来源: 城市网


(资料图片仅供参考)

1、如图,点P是正方形ABCD内一点,连接PA、PB、PC,将△ABP绕点B顺时针旋转到△CBQ的位置。

2、若PA=2,PB=4,∠APB=135°求PC的长。

3、解:在正方形ABCD中,∠ABC=90°∵△ABP绕点B顺时针旋转90°到△CBQ的位置∴△ABP≌△CBQ∴CQ=AP=2,BQ=BP=4,∠PBQ=90°在Rt△PBQ中,由勾股定理得PQ=根号下BP方+BQ方=根号下4方+4方=根号下32∵BP=BQ∴∠BPQ=∠BQP在△BPQ中,∠BQP=(180°—∠PBQ)*二分之一=45°又∵∠BQC=∠APB=135°∴∠PQC=∠BQC—∠PQB=90°在Rt△PQC中,由勾股定理得PC=根号下PQ方+QC方=6。

相信通过勾股定理经典练习题这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。

本文由用户上传,如有侵权请联系删除!

关键词:

责任编辑:QL0009

为你推荐

关于我们| 联系我们| 投稿合作| 法律声明| 广告投放

版权所有 © 2020 跑酷财经网

所载文章、数据仅供参考,使用前务请仔细阅读网站声明。本站不作任何非法律允许范围内服务!

联系我们:315 541 185@qq.com